Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(3): e13676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505216

RESUMO

The decline of lions (Panthera leo) in Kenya has raised conservation concerns about their overall population health and long-term survival. This study aimed to assess the genetic structure, differentiation and diversity of lion populations in the country, while considering the influence of past management practices. Using a lion-specific Single Nucleotide Polymorphism (SNP) panel, we genotyped 171 individuals from 12 populations representative of areas with permanent lion presence. Our results revealed a distinct genetic pattern with pronounced population structure, confirmed a north-south split and found no indication of inbreeding in any of the tested populations. Differentiation seems to be primarily driven by geographical barriers, human presence and climatic factors, but management practices may have also affected the observed patterns. Notably, the Tsavo population displayed evidence of admixture, perhaps attributable to its geographic location as a suture zone, vast size or past translocations, while the fenced populations of Lake Nakuru National Park and Solio Ranch exhibited reduced genetic diversity due to restricted natural dispersal. The Amboseli population had a high number of monomorphic loci likely reflecting a historical population decline. This illustrates that patterns of genetic diversity should be seen in the context of population histories and that future management decisions should take these insights into account. To address the conservation implications of our findings, we recommend prioritizing the maintenance of suitable habitats to facilitate population connectivity. Initiation of genetic restoration efforts and separately managing populations with unique evolutionary histories is crucial for preserving genetic diversity and promoting long-term population viability.

2.
PLoS One ; 13(1): e0190898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385146

RESUMO

The global lion (Panthera leo) population decline is partly a result of retaliatory killing in response to livestock depredation. Nairobi National Park (NNP) is a small protected area in Kenya surrounded by a human-dominated landscape. Communities around the park use flashlights to deter lions from their livestock bomas. We investigated the response by lions to the installation of a LED flashlight technique during 2007-2016.We interviewed 80 owners of livestock bomas with flashlights (n = 43) and without (n = 37) flashlights in the surroundings of NNP and verified reported attacks on bomas against predation data over10 years. The frequency of attacks on bomas equipped with flashlights was significantly lower compared to bomas without flashlights. We also found that after flashlight installation at livestock bomas, lion attacks took place further away from the park edge, towards areas where bomas without flashlights were still present. With increased numbers of flashlight installations at bomas in recent years, we further noticed a shift from nocturnal to more diurnal predation incidences. Our study shows that the LED flashlight technique is effective in reducing nocturnal livestock predation at bomas by lions. Long term studies on the effects as well as expansion of this technique into other communities around NNP are recommended.


Assuntos
Luz , Leões , Gado , Comportamento Predatório , Animais , Conservação dos Recursos Naturais , Quênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...